A Light Higgs Boson from Gauge or Gaugino Mediation

David Morrissey

Harvard University

Based on work done in collaboration with

Aaron Pierce

hep-ph/0807.2259

BNL Forum, Nov.7, 2008

Supersymmetric Higgs Bosons

- MSSM: Higgs signatures are often similar to the SM: h^0 is SM-like, H^0 and A^0 are difficult at the LHC.
- NMSSM: Higgs signatures can be much different if there is a light pseudoscalar a_s .

$$h^0
ightharpoonup a_s \, a_s$$
 with $a_s
ightharpoonup 2b, \, 2 au, \dots$ $BR(h^0
ightharpoonup a_s a_s) \sim 1.$

- This can help with fine tuning if $a_s \to 2\tau$. [Dermîsèk+Gunion '05]
- \bullet Making a_s light depends on couplings, SUSY breaking.

A Light a_s Pseudoscalar from a Singlet $U(1)_R$

• A light a_s can arise from an approximate singlet $U(1)_R$. [Dobrescu+Matchev '00, Schuster+Toro '06]

NMSSM Couplings:

$$W \supset \lambda \, S \, H_u \cdot H_d + \frac{\kappa}{3} \, S^3$$

$$V_{soft} \supset m_s^2 |S|^2 + \lambda A_\lambda S H_u \cdot H_d + \frac{\kappa}{3} A_\kappa S^3.$$

- Approximate Singlet $U(1)_R \Leftrightarrow A_{\lambda,\kappa} \to 0$.
- This arises naturally if SUSY breaking is communicated primarily by gauge interactions.

Gauge Mediation and the NMSSM

- NMSSM can fix the $\mu B\mu$ problem of GMSB.
- GMSB + NMSSM has trouble with EW symmetry breaking.
 [DeGouvêa, Friedland, Murayama '97]
- Minimal GMSB $\Rightarrow \sqrt{|m_S^2|}, A_{\lambda}, A_{\kappa}, v \ll |\mu_{eff}|$.
- Minimization Conditions $\Rightarrow \frac{\kappa^2}{\lambda^2} \simeq -\frac{m_s^2}{\mu^2} \ll 1$.
- CP-even Higgs: $m_{h_1}^2 \propto \left(\frac{\kappa^2}{\lambda^2} \frac{g^2 + g'^2}{2\lambda^2} 1\right)$.
- Need $\lambda^2 \ll g^2 \Rightarrow$ singlet decouples, $BR(h^0 \to a_s a_s) \to 0$.

Deformations of NMSSM Gauge Mediation

- ullet A more negative $m_S^2(M_Z)$ can avoid this conclusion.
- Simple Options:
 - 1. New negative contributions to m_S^2 at M_{mess} from coupling to messengers (without violating $U(1)_R$).

[Ellwanger, Jean-Louis, Teixeira '08]

2. Add $\mathbf{5} \oplus \mathbf{\bar{5}}$'s coupling to S:

$$W \supset \xi_D S D D^c + \xi_L S L L^c$$
.

Yukawa couplings drive m_S^2 negative through RG running.

[Agashe+Graesser '97; DeGouvêa, Friedland, Murayama '97]

Option #1: GMSB with m_S^2 Free

- \bullet + = no Higgs constraints, x = Higgs constraints
- Two Regions: A. $\kappa \sim \lambda \gtrsim 0.4$, $\tan \beta \lesssim 2.5$
 - B. $\kappa \ll \lambda \lesssim 0.05$, $\tan \beta \gtrsim 5$.

Region A ($\lambda \gtrsim 0.4$): A Terms

- Many points have $m_{as} < m_{h^0}/2$ for lower M_{mess} .
- A_{κ} is more strongly constrained than A_{λ} .
- $|m_S^2|/\mu^2 \simeq 1$ for all these points.

Region A ($\lambda \gtrsim 0.4$): Higgs Masses and Decays

- $h^0 \rightarrow a_s a_s \rightarrow 4b$ is common.
- $h^0 \rightarrow a_s a_s \rightarrow 4\tau$ is a bit tuned.

Region B ($\lambda \lesssim 0.05$): A Terms

- ullet All points have $|m_S^2|/\mu^2\ll 1$, $m_{a_s}< m_{h^0}/2$.
- $\kappa \ll \lambda \ll 1 \Rightarrow \text{approximate } U(1)_{PQ}$.

$$\Rightarrow A_{\kappa} \ll A_{\lambda} \ll |\mu|.$$

Region B ($\lambda \lesssim 0.05$): Higgs Masses

- \bullet Pseudoscalar a_s is always very light.
- It is also always decoupled: $BR(h^0 \rightarrow a_s a_s) \ll 1$.

Some Analytic Results ($|\mu| \gg v, A_{\lambda,\kappa}$)

• Pseudoscalar a_s Mass:

$$m_{a_s}^2 \simeq \frac{3\kappa}{\lambda} \mu \left(\frac{3\lambda s_{2\beta} \lambda^2 v^2}{\kappa^2 2} A_{\lambda} - A_{\kappa} \right).$$

• $BR(h^0 \rightarrow a_s a_s) \propto c^2$:

$$c \simeq \left(\frac{1}{2}\lambda^{2}\right) \left(\frac{\lambda}{\kappa} - 2s_{2\beta}\right) \left(\frac{\lambda}{\kappa} + s_{2\beta}\right) \frac{m_{h^{0}}^{2}}{2\mu^{2}} + \left(\frac{1}{2}\lambda^{2}\right) \left[\frac{1}{2\kappa} \frac{\lambda A_{\kappa}}{\mu} \left(1 - \frac{\kappa}{\lambda} s_{2\beta} - 12\frac{\kappa^{2}}{\lambda^{2}} s_{2\beta}^{2}\right) - 9\left(\frac{\kappa}{\lambda} s_{2\beta}\right) \frac{\lambda A_{\lambda}}{\kappa \mu}\right].$$

Extends the results of [Dobrescu+Matchev '00] to include $A_{\lambda,\kappa}$.

Option #2: GMSB with Vector-Like Exotics

- $W \supset \xi_{D_i} D_i D_i^c + \xi_{L_i} L_i L_i^c$, with $i = 1, ..., N_5$.
- $N_5 = 1$: $|m_S^2|/\mu^2 \ll 1$ obtains for $\xi_{D,L} < 1$.
 - → singlet decoupling (Region B)
- $N_5 \ge 2$: $|m_S^2|/\mu^2 \sim 1$ is possible.

 $\xi_{D,L}$ communicates $U(1)_R$ breaking to the singlets.

- \longrightarrow large $A_{\lambda,\kappa}$ and a heavier a_s .
- Higgs phenomenology is similar to the MSSM.

Phenomenology of the Exotics

• Masses from the singlet VEV: $m_{D,L} = \xi_{D,L} \langle S \rangle$.

- These can decay through d = 5 operators.
- LHC signatures from punch-through to the muon chamber.

[Allanach et al. '01; Fairbairn et al. '06, Kang, Langacker, Nelson '07]

Gaugino Mediation

 Idea: bulk gauge multiplets communicate SUSY breaking on a hidden brane to the MSSM matter fields.

[Kaplan, Kribs, Schmaltz '99; Chacko, Luty, Nelson, Pontón '99]

- A singlet $U(1)_R$ also arises naturally in the NMSSM.
- Results are qualitatively similar to GMSB:
 - $-\ m_S^2$ free leads to disjoint regions A and B.
 - Exotic ${f 5}$'s lead to either singlet decoupling or a heavy a_s pseudoscalar.
- A light singlet neutralino can be the LSP.

Summary

- NMSSM + gauge or gaugino mediation addresses the $\mu B\mu$ problem in these models.
- ullet Vanishing input m_S^2 makes EWSB challenging, and forces an approx. $U(1)_{PQ}$ and a decoupled singlet.
- An additional contribution to m_S^2 can fix this. A light coupled a_S with $BR(h^0 \to a_s a_s)$ is fairly common.
- ullet Extra exotics can help too, but don't keep a_s light.
- ullet $pp o Zh^0$ with $h^0 o a_s a_s o 4b$ at the LHC? [Carena, Han, Huang, Wagner '07]